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Abstract. For lattice chiral and gauge models we develop an 1/N2 expansion of the 
mean-field approximation. Special attention is paid to the free energy for which we also 
present as an 1/N2 expansion the effect of fluctuations around the mean-field solution. 
The differences between U ( N )  and S U ( N )  are pointed out. Finally, for the chiral model 
we apply the mean-field saddle-point technique to compute the two-point correlation 
function. 

1. Introduction 

The lattice description of models in physics is now very well developed. When applied 
to field theory, the lattice approach becomes particularly relevant in the neighbourhood 
of a critical point; for many theories under consideration by particle physicists the 
interesting critical point corresponds to 1/p + 0 where p is the strong coupling constant 
(inverse temperature). Therefore, a good understanding of the weak-coupling 
behaviour of the theory is clearly necessary. 

Apart from the standard 1 / p  expansion, other techniques have been developed 
which are also able to describe the weak-coupling phase of lattice models. In the 
absence of exact results they consist of expansions in other parameters, namely in 1/ N 
(’t Hooft 1974, Witten 1979) or in the case of the mean-field approximation ( M F )  
(Brezin and Drouffe 1982) in l / d  where d is the spacetime dimension. In general 
these non-perturbative approaches provide good control of the behaviour of the theory 
in the large-/3 region and even in the intermediate region which is crucial for the 
discovery of an eventual phase transition. 

The implications of the MF for lattice chiral models were first studied by Kogut et 
a1 (1982); more recently an improved MF was obtained by several groups (Brihaye 
and Rossi 1984a, Guha and Lee 1984). Most of the information is available for a few 
finite values of N( N = 2,3,4,5)  or in the large-&’ limit. The M F  method was also 
applied to lattice gauge theories. A naive and improved M F  approximation was obtained 
by considering the mass matrix determinant of the fluctuations around the M F  (Muller 
and Ruhl 1982, Hasegawa and Yang 1982). A detailed analysis of the free energy was 
performed in the critical region of the coupling constant, i.e. the region where the M F  

prediction (weak coupling) intersects the strong-coupling curves (Muller et al 1983). 
This analysis provides important information on the phase structure of the model. 
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2386 Y Brihaye and  A Taormina 

More recently, finite-temperature effects and  quarks were included in the computation 
of the free energy (Green and  Karsch 1984). 

Another aspect of the M F  is to use it to get information about the standard 1 / p  
perturbative expansion without calculating any Feynman graph. We know that this 
expansion is plagued with a number of momentum integrals which cannot always be 
computed analytically. So far, the naive M F  can lead to the large-d behaviour of these 
integrals ( d  being the dimension of spacetime) while an  improved M F  gives the l / d  
corrections. 

The purpose of this paper is to compute the 1 / p  and 1 / p 2  coefficients of the free 
energy for the lattice chiral model and for the Wilson action in an  axial gauge by the 
M F  method (naive and  improved). The large N, 1,”’ and l / N 4  corrections for the 
U( N)  and  SU( N )  symmetry groups are computed using the so-called ‘single-link group 
integral’ (Brower and Nauenberg 1980, Brower et a1 1981) under the form of an  1/ N 2  
expansion (Brihaye and Rossi 1984b). This new form is used to simplify a technique 
developed earlier by Muller and Ruhl (1982). We work with an  arbitrary number of 
spacetime dimensions, all quantities appearing in terms of the variable pd. We check, 
to the best of our knowledge, the agreement of our formulae with the standard l / p  
expansion and point out some restrictions in the domain of validity of the 1 / N 2  
corrections. 

The paper is organised as follows: in 0 2, we give the single-link group integral 
formulae of interest for our computation; in 0 3 we treat the chiral model, giving an  
expression for the free energy and we also show how the M F  can provide an  approxima- 
tion for the two-point correlation functions. Finally in § 4, we use the Wilson action 
in the axial gauge, compute the 1 / N 2  corrections to the M F  and analyse their con- 
sequence for the free energy of this model. 

2. Single-link group integral 

The basic ingredient in the M F  approach of a lattice unitary model described by an  
action S( U )  is to substitute the constrained variable U (belonging to U( N))  or  SU( N ) )  
by an unconstrained one, say V, belonging to GL(N,  C). Symbolically, one has 

S , , ( V , A ) = S ( V ) - N T r ( A V +  V+A+)+N*w(A,A+) .  (2.3) 

The matrix A is a Lagrange multiplier insuring the contraint and  w is the so-called 
one-link group integral defined by 

d U exp N Tr( UA+ + A U + ) .  (2.4) 

It depends on the group only, not on the model. 
The mean-field prescription consists in looking for a saddle-point configuration of 

the effective action which is translational invariant and proportional to the identity 
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matrix 

A= au, v =  vu. (2 .5)  

After solving the equations of motion, one studies the action (2 .3)  for the fluctuations 
around the saddle point 

A = a I + y ,  y = B + i C ,  B =  B + ,  c=c+ (2 .6)  

v =  vu+& [ =  D + i E ,  D =  D’, E = E +  (2.7) 

Seff = S&( a, U )  + Si*’( y ,  5) + Si3’( ’y, 5) + . . . . (2 .8)  

In  (2.6) and (2 .7) ,  we have split the fluctuations in Hermitian and  anti-Hermitian parts 
for later convenience. 

While the expansion (2 .8)  is straightforward for the first two terms of the effective 
action (2.31, the treatment of the w part requires a lot of work. Let us first present an  
1/ N’ expansion of w valid f o r  t < 1 only (see (2.13)): 

that is 

(2.10) 

+X 

w,(A,, 4 )  = -$ In( 1 - t )  + S In C exp i NI4( 1 - t)‘2’2 (2.11) 
I = - X  

where the following definitions have been introduced 

1 det A a = {  1 i n S U ( N )  
+=-ln- 

21N det A+’ 0 i n U ( N )  

(2.12) 

(2.13) 

(2.14) 

and Ai are the eigenvalues of the matrix AA’. We further know the coefficient w3 in 
the U( N )  case. We present it here for information 

(2.15) 

We give for further reference the quadratic and  cubic fluctuations of the function w 
around the saddle point (2.5) (i.e. A ,  = a* and 4 = 0). They respectively read 

W ( A ,  A+) = W ( U U ,  U I ) + A  + y3+. . . (2.16) 

Ju = (fl + f 2 )  N (2.17) 
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T r B  
U 

1 T r B T r  C 2  1 TrBC’ ‘if’ N2 + i f 2 7  

2 Tr C T r  BC 
U N ’  -- g l N -  (2.18) 

As expected (2.17) and (2.18) are even functions of C ;  here, for shortness, we will 
present only the functions appearing in the quadratic part A and write all other ones 
in the appendix. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Using the formulae (2.9)-(2.14), one can compute the above quantities; up to l / N 4  
terms and for a > f, we have obtained 

1 6 
f1(a)=- 1 - -  +- S(a) 

f2(a)=f4(a)=- - - 1  + 

d ( :U) -24N2a2(2a - 1 )  2aN2 

3 6a -- 3 
a ( 8a ) 24N2a2(2a- l )  2N2’(‘) 

(2.23) 

(2.24) 

(2.25) 
U 

1 1 
f 3 ( a )  =s+ 

S(2a - 1 )  
’ ( a )  (2.26) 

UN’ = - 

and we have introduced the function s ( a )  related to the O3 theta function: 

=In o ~ ( o ,  (1 - 1/2u)”*). (2.27) 

The function s ( a )  behaves straightforwardly around a = f and its asymptotic behaviour 
(for a + a )  can be identified after use of the following property of theta function 
(Doetsch 1955): 

+X 

(2.28) 
n = - x  Z 
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for y arbitrarily large. Combining (2.27) and (2.28) leads to the following approxi- 
mation 

s( a)lo+m = -4 In [-( 1/27r2) In( 1 - 1/2a)]+ln( 1 + 0 ( / z I y ) ) .  (2.29) 

This approximation was used numerically in Guha and Lee (1984); in the following 
sections it will be confirmed that it contains all the perturbation information for the 
models under investigation. 

It must be noticed that the term A (see (2.17)) was already obtained in Guha and 
Lee (1982), Muller and Ruhl (1982) and Hasegawa and Yang (1983) using an indirect 
method. Here, we present it again for completeness and to show how its derivation 
works in our formalism. Moreover, our formulae are more suitable for obtaining 
higher-order corrections in N 2 .  

3. Chiral model 

The action for the lattice chiral model is taken to be 

S(  U )  = NP C Tr( UnU:+, + U:  U,,+,) 
P> n 

and the associated effective action follows from (2.3) 

seff ( v, A )  = c P N c Tr( v n  v:+P + v: vn+, ) 
n P 

- N Tr(A,V;+ V,,A;)+ N2w(A, , ,  A: ) .  

Using the ansatz (2.5) we obtain the following set of saddle-point equations 

(3.1) 

(3.2) 

a = 2Pdv U = i(a/aa) w ( a / a 4 ) w  = 0, (3.3) 
the third equation being satisfied by 4 = 0 (or, equivalently, a is real). For a > 4, one 
can use the expansion (2.9) for w and arrange the system (3.3) in the following form 

a = 2Pdv (3.4a) 

-- U 2  - 9a +. . .) +O(+) (3.46) 

assuming that the function a admits an 1/N2 expansion; we have found the formal 
solution below 

a = ao+ a,/ N 2 +  a2/  N4+0(1/ N 4 )  

a , = p d ( l *  ( 1  - 1/2Pd)’”) 
(3 .5 )  

( 3 . 6 ~ )  

and the corresponding expansion for the free energy takes the form 

Let us insist on the fact that all coefficients in (3.5) and (3.7) are N independent. In 
U( N )  however the expansions above simplify drastically; in particular, (3.7) can be 
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written 

1 1 
In 1-- + -- - a  -"-'ln2a -- Fe, 

8 N 2  ( 2:) 25N4(2ao-1)3 VN2 0 2 2 (3.8) 

A few remarks should be made before continuing: first the solutions (3.5)-(3.6) 
are defined only in the region p d  34 (weak coupling); the solution corresponding to 
the minus sign in (3.6) has to be rejected because it does not obey the condition a > f. 

While the large N limit of a (i.e. a,) and  of Fe, are defined on the interval pd ai, 
the 1/ N2 corrections become infinite when p d  approaches the critical point ( p d  = 
f, a, = f). The singularities are stronger while increasing the order in 1/ N2. Therefore, 
the 1 / N 2  corrections have to be considered seriously on a smaller interval; this 
peculiarity reflects the fact that the expansion (2.9) is unable to reproduce the w 
function around the phase transition point arising in the large- N limit. This problem 
has already been raised in Muller and Riihl (1982) and Goldschmidt (1980). 

In the large pd region, things are smooth and  analytic; we obtained the following 
expansions respectively in U( N) and SU( N) 

Fe, N 2 + 1  1 N 2 + 2 ( L ) 2  
-=2pd-; ln2pd+- 
VN2 25N2 pd 2'N2 pd 

(3.9) 
10N4+25N2+6 1 

+ 3 .  212.  N4 (z)3+0(b)4+0(5) 
N 2 - 1  N 2 - 3  1 N2-Y 1 -- - 2pd -- In 2pd +- 2 5 N2 - pd + 28N2 (s) * + (h) + (5) (3 ' O )  Fe, 

VN2 N2 

whose l / p d  coefficients coincide with standard 1 / p  expansion (see Brihaye and Rossi 
1984a). This suggests that our  method is correct and relies on the higher orders we 
have presented. 

This completes the naive MF analysis of the chiral model. The one loop correction 
can be computed as described in § 2, i.e. by considering the quadratic form of Se, in 
the fluctuations y and 6 (see (2.6)-(2.7)) around the saddle point 

S'" = (2p c Tr E,,!?,,, - 2 Tr E,C, + 2 p  c Tr D,D,+, - 2 Tr B,D, + .U( B,, C,,) 
n , w ) 

(3.11) 

where .U was given in (2.17). The derivation is the same as in the large-N limit 
presented in Brihaye and  Rossi (1984a); therefore we give only the final result: 

1 N 2 - 1  1 
(one loop) = - ( ~ N2 ( Fd(fi) + Fd (fi + f 2 ) )  +? ( F d  (fi + f i + f 3 ) )  + Fd (fl+ gl)) F,, 

VN2 

(3.12) 

with the notation of Guha  and  Lee (1983) 

(3.13) 

Again, we can develop a in powers of l / p d  and  obtain the following first non-trivial 
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terms above, given respectively for U( N)  and SU( N) 

+- ' ( - ' i-o(p-4d-5) (3.14) 
N4 212P3d4 

F,, V N 2  (one loop) = ___ 211i2d3( 1 + ~ ( 7 + ~ ) ) + O i p ' d - 4 ) + 0  (3.15) 

to be added respectively to (3.9) and (3.10). In computing (3.14) and (3.15) we have 
used the fact that f l  = 1/2pd, as can be seen from equations (2.19) and (3.3). 

Next, we will use the MF approach to compute the two-point correlation functions 
of the chiral models. Following the spirit of MF, the integrals are dominated by the 
saddle point: 

Tr 
2 N  
--(uflu:+ umu;) 

-- Tr I d V d A (  V,,V",+ V,,,V:) exp Se,(A, V) 

= v2  + corrections. (3.16) 

The computation of the corrections in (3.16) can only be done after diagonalising the 
quadratic form (2.17) in the E,, and D, degrees of freedom. After some algebra, the 
following result can be obtained 

- 
2 N  5 d V dA exp Se,( A, V) 

Tr 
2N 
-(V,V",+ V,v;) 

2 v  Tr 2 A-IA- '  Tr 
= v 2  + -- - (B, )  + - Ai: + - (B,B, + C,C,) 

Pd N P P N  

A,,,,,={:T(z)d e x p ( i p ( n - m ) ) ~ c o s p , = { T  Ir -T -exp(ip(n-m) 2T dp Ap. 

(3.17) 

(3.18) 

When restricted to the lowest order, formula (3.17) takes the form 

Tr 
2N 
-(VflVL+ vmv;) 

= v2+- N 2 - 1  [ ~ ( f ~ ) + ~ ( f 1 + h ) l + ~ [ ~ ( f 1 + f ~ + f 3 ) + ~ ( f 1 + g 1 ) 1  1 

P ( x )  = I_ (z) 

(3.19) N 2  

with the definition 

(3.20) 

The trivial v2  term in (3.17) together with the first term of provides an approximation 
for the asymptotic value (large separation) (Green and Samuel 1981) of the function 

dp ( A , l A o ) P ~ x l ~ P  + x exp(ip(n - m)) 
(1 - 2 P d ~ A ~ l A o )  



2392 Y Brihaye and A Taormina 

(3.16). The second term of P is explicitly separation dependent andpecreases while 
the separation increases. It is easy to see that the contribution of F(fl) is nothing 
other than the 1/P term obtained by perturbative methods. The interpretation of the 
other terms of (3.19) is less trivial and is under investigation. 

4. Gauge model 

The model is described by the Wilson action on a &dimensional lattice L. The partition 
function is 

where the matrices U belong to U(  N) or SU( N), and where we pick the axial gauge 
U x , d  = 1 .  

The random field transform leads to the following effective action 

d-1 

see= N C  ( P  5' T~(V, . ,V,+~, ,V=+, ,V: , )+P c Tr(vx,,v;+i,,+ V , + ~ . ~ V L )  

(4.2) 

We want to perform a two-loop analysis which consists in finding the large-h' 
behaviour of h, ,  h2, k ,  and k ,  in the following expansion of the free energy F ( P ,  d - 1): 

F ( P ,  d - 1 )  = (In Z ) /  V N 2  (4.3) 

F ( P 9  = h , ( p ,  d )  + 1 (h,+ k,+ 0 1 - 

P d - 1  (d -1 ) '  (-1) ( d  - 1 )  

+ o(p-'). (4.4) 

Things are arranged so that P (  d - 1) is the effective parameter of the expansion. The 
naive M F  analysis will provide the h,  and h2 coefficients, while k ,  and k2 receive a 
contribution from naive and improved M F ;  this is due to the fact that there is a gauge 
fixing term in the action. Indeed, in the case of the chiral model, only the variable pd 
appears at the naive MF level (see (3.9)-(3.10)). 

4.1. Naive mean Jield 

With the ansatz (2.5) for the naive MF approach, the effective action (4.2) becomes 

= N2V(d  - l){P[(d -2)u4+2u2]-2au + w(a)} (4.5) 

and the saddle-point equations are 

2/3(d-2)u3+2/3u=a (4.6) 

U =')+(a)  = 1 --+- - +Si(a) )  +.(+) 
2 4a 2N2 8a(2a-1)  (4.7) 
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where the dot denotes differentiation with respect to a, and s ( a )  is given in equation 
(2.27). 

To solve the equations (4.6)-(4.7), we assume, as for the chiral model, that a and 
U admit an 1/N2 expansion of the form (3.5). Clearly, a, and U, obey the set of 
equations appearing in Hasegawa and Yang (1983): 

2 p ~ J (  d - 2 ) ~ ; +  11 = U, 

U,= 1 - 1/40, (4.8) 

which cannot be solved exactly. However, the coefficients a, and U, can be computed 
in terms of a, and U,; for n = 1 ,  one has 

-1  + SS( a,) 
4a: 

4 a i - 2 P [ 3 ( d - 2 ) ~ ~ + 1 ]  (4.9) 

U ,  = 2 p ~ , [ 3 ( d  - 2 ) ~ : + l ] .  (4.10) 

Now, the effective action (4.5) can be 1/N2 expanded, and the result becomes very 
simple after the use of the saddle-point equations 

1 
= p u i - ~ ( a o - ~ ) +  w=(u,)+- w l (ao )  Sen;;'ve 

N'V(d - 1 )  N2 
1 

N +-t i (Wz(a , )+ta ,W,(a , ) )+O 

All that we have done up to now is quite formal 

(4.6) : 

(4.11) 

as far as we do not know an. Let 
us then give an approximation of a, by- looking at the equations (4.8) which determine 
U, as a function of /3 in three different branches. The condition a o ? ~  (or v o Z i )  selects 
the upper branch, where we have the following approximations ( p  = 8( d - 1)p): 

+ o ( B - ~ )  1 3 d - 5  15d2-51d+44 u o = l - - -  

a ~ = ' P  -- + 4p(d - 1)' (-6d2+21d - 19) 

p p 2 ( d - l ) -  p 3 ( d - l ) '  

- 3 d - 5  1 

1 
4p2( d - 1 ) 3  

- (28d3-148d2-34d-162)+O(p-3) 

(4.12) 

(4.13) 

on the domain pc < p s oc, where pc is the point where the tangent to U becomes vertical: 

(4.14) d p / d ~ o / ~ ~ ~ i ~  = O J  ( d  - 2)( - 4 ~ : ~  + 3 U&) - 2 ~ 0 ,  + 1 = 0. 

We present some numerical results about p,. 

Table 1. 

2 0.5 
3 0.62 
4 0.659 

0.5 
0.38 
0.29 

3 2  32 large 
27(d - 2)" ' ' 
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There is an  important point to be stressed here: it is a fact that for d 2 3 and on 
the inverval [pc,w[ ,  the functions a, and U, never approach the value i; as a con- 
sequence, the 1/N2 corrections in (4.11) are defined on the whole domain [pc,c0[. 
The situation is different in the chiral model where the 1/N2 corrections become 
infinite whenever /3 approaches the critical value pc in such a way that no valuable 
information can be obtained in the neighbourhood of pc. 

Now, we can exploit our knowledge of all quantities entering in formula (4.11) 
and give the expansion in 1/p that we have found. We will stop the expansion to 
1/p2 terms. A quick analysis shows that to this order of perturbation, we only need 
the 1 /  NZ approximation in (4.1 1 ) .  Straightforward algebra leads to the following 
expression for Sefl  ( A  = 0.248 75)  

p 3  1 
=/3d--  1 - -  ln---+-(61n2.rr2+&-A-&ln N) s:;;"' 

N 2 V ( d  - 1) k (  : 2 )  2 4 N2 

+- 3--+- 1-46 2-- 
2'/3[ d t l  : 2 (  ( d l l ) ) ]  

1 +z 2-- 
5 ( d I )  ++ (-?+&)I +- 

(4.15) 

4.2. Improved mean Jield 

The aim is to substitute for Vr,, and A , ,  the expressions (2.6)-(2.7) in the effective 
action (4.2), and to compute the determinant of the quadratic form in the variables 
5 and y. This tedious task has been accomplished by Muller and  Ruhl (1982) and 
Hasegawa and  Yang (1983). However, we can develop further their formal results by 
taking into account the 1/N2 expansion of w, a and U given in the previous section, 
and put them in a form suitable to complete (4.15). The contribution of the degree 
of freedom of type B can be easily computed using the formula (53 )  of Muller and  
Ruhl (1982). We find, u p  to the order we are interested in: 

+o(p-')+o (i) a (4.16) 
st,, - 3 

N 2 V ( d - 1 ) - 2 5 p 2 ( d - 1 )  ( 
where the terms in the brackets come from the contribution of the traceless part and 
the trace of B. 

Now, the treatment of the C type degree of freedom requires more care. A tedious 
computation gives, up  to the order of interest 

(4.17) 

This last result is based on the fact that for U( N), the eigenvalues linked to the traceless 
part and  the trace of C are equal, and  moreover, the leading contribution of the 
eigenvalue related to the trace of C is zero in the S U ( N )  case. 
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It is worth noticing that the corrections (4.16) are small and seem to converge 
rapidly in [p(d  - 1 ) I - l .  On the contrary, their analogue in equation (4.17) are more 
important, including a term independent of p. This is due to the peculiar P ( d  - 1 )  
dependence of the eigenvalue fl linked to these degrees of freedom. The situation is 
much simpler in the chiral model where the corresponding contribution reduces to a 
constant (see the first term in (3.12)). In the formula (4.17), only the terms with relevant 
order in P(d - 1 )  were kept. 

Collecting the results (4.15), (4.16) and (4.17), we have, using (4.4) 

1 
d - 1  

In 4P(d - 1 )  -- ( n  In 2-:+ln(d - 1)) 

N 

(4.1 8a) 

(4.18b) 

( 4 . 1 8 ~ )  

(4.18d) 

(4.1 8e) 

We then have an expression for the free energy of the Wilson gauge model, computed 
using the M F  technique. It gives as announced the 1/p and 1/p2 coefficients up to 
l /  N4 corrections in U(N)  and SU( N). 

5. Conclusions 

In this paper, we have tried to incorporate the 1/N2 expansion in the mean-field 
approach of lattice chiral and gauge models. We have verified to the best of our 
knowledge that the double l /d,  1/N2 expansion is in agreement with the standard 
weak-coupling expansion of the free energy; this relies on the higher orders we have 
computed (p -2  for gauge models, p-3 for chiral models) and, more generally, on the 
method we have used. 

One may hope that, with the increased precision, our approximation for the free 
energy can be considered over a large domain of the coupling constant, i.e. a domain 
covering part of the (delicate) intermediate coupling region. 

In this spirit, we have argued that for the gauge model the 1 /  N 2  expansion is valid 
in the intermediate (or critical point) region. This is unlike the chiral model, where 
the 1/  N 2  correction becomes infinite at the critical point, providing a limitation to the 
procedure developed above. 

Beside any gain of accuracy, our results allows for a comparison between the ( p  
depending) coefficients in the double expansion we have presented. In particular, each 
of them is (up  to In p term) an analytic function of p - ' .  
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With this motivation we have attempted to understand the weak-coupling behaviour 
of chiral models by exploiting MF to compute the two points correlation function. The 
naive MF rely on the asymptotic value (large separation) only while the asymptotic 
decay is related, in leading order in d, to the improved MF. 

Finally, we have presented the cubic fluctuations of the single-link integral which 
contribute to the tadpole diagram of ( B )  in equation (3.16). 
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Appendix 

In this appendix, we present the definitions of the functions fi coming in the cubic 
fluctuations of the one-link single integral: 

U 

1 
f 7 ( a )  = - 
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